

Fault Analysis

2004-02

Fault Analysis

Assessment of Damage

1.	Piston	2-9
2.	Cylinder	10–11
3.	Crankshaft	12
4.	Crankcase	13
5.	Carburetor	14–18
6.	Guide Bar	19–21
7.	Saw Chain	22-24
7.1	Rapid-Duro	25-26
8.	Miscellaneous	27–28

1. Piston

1.1 Location: Running surface of piston

Condition: Scores over entire running surface

Causes: Incorrect fuel mixture

No engine oil in fuelToo little oil in fuel mix

• Fuel old or of unsuitable quality

Fig.: Exhaust side

Fig.: Inlet side

1.2 Location: Piston headCondition: Burnt out

Causes: Preignition as a result of

• Spark plug with too low a heat range

• Fuel with too low an octane rating

(< 90 RON)

1.3 Location: Exhaust side of piston

Condition: Scores over entire running surface

Causes: Inlet mixture too lean

Fuel feed interrupted

• Impulse hose dirty or leaking

Crank drive leaking

Results in over-revving and insufficient

lubrication.

1.4 Location: Exhaust side of piston

Condition: Scores over entire running surface

Causes: Thermal overload due to inadequate cooling

Fan housing very dirty

• Cylinder fins heavily loaded with dirt Results in overheating or seizure at front

right next to muffler.

1.5 Location: Exhaust side of piston

Condition: Scores and oil carbon residue over entire

running surface

Causes: Unsuitable engine oil or over-rich carb

setting causes excessive build up of carbon on piston head. Oil carbon can burn off as a result of an increase in combustion chamber temperature

brought about by:

Making carb setting leaner

Mixture becoming leaner due to air

entering through a leak

 Changing fuel mixture (e.g. to unleaded gasoline or synthetic engine oil)

1.6 Location: Exhaust side of pistonCondition: Worn running surface

Causes: Dirt particles and oil carbon in exhaust

port have got between piston skirt and

cylinder.

1.7 Location: Area of piston rings

Condition: Carbonization

Causes: Unsuitable engine oil has been used

which sticks between piston rings and piston and restricts movement of rings.

1.8 Location: Interior of piston

Condition: Deposits

Causes: Chain lubricant seeps into crankcase or

combustion chamber through a leaking joint and accumulates on piston and

other parts of engine.

1.9 Location: Piston landCondition: Broken

Causes: Abnormally high pressure on piston ring

is transmitted to piston land

 Preignition /pinking (octane rating of fuel < 90 RON) results in increase in

pressure and overheating

1.10 Location: Inlet side of pistonCondition: Slit in piston skirt

Causes: Large foreign body has entered engine

• through inlet port

• Parts of crank drive (bearing, washer,

cage)

1.11 Location: Inlet side of piston skirt

Condition: Dull running surface

Causes: Abrasive dust causes excessive wear on

piston skirt and rings

Remedy: Check condition and type of air filter.

1.12 Location: Inlet side of piston

Condition: Abnormal wear

Causes: Dust particles have entered engine

through inlet port
Faulty air filter

Poor filter maintenance

• Unsuitable air filter

1.13 Location: Inlet side of piston

Condition: Piston ring broken

Causes: Ring severely weakened by wear

Conse- Lack of control causes ring to break

quences:

1.14 Location: Piston rings

Condition: Ring broken

Causes: Excessive piston ring wear means that

ring is no longer properly controlled in

groove

Conse- Pieces of broken ring damage running

quences: surface

1.15 Location: Piston ring

Check in new condition

Gap on new ring is 0.2 - 0.4 mm

1.16 Location: Piston ring

Condition: Worn

Causes: Long engine running life or effects of dust

causes piston rings to wear

Conse- Ring gap becomes much wider,

quences: noticeable loss of compression pressure

Result: Ring breaks

1.17 Location: Piston rings

Comparison - NEW / OLD

Width of ring can be measured to

establish wear

1.18 Location: Piston

Condition: Scores in running surfaceCauses: Minute particles of faulty

• Main bearings

• Big-end bearing

Small-end bearing

have got between cylinder wall and

piston skirt

1.19 Location: Piston head

Condition: Indentations caused by impact with

foreign bodies

Causes: Large particles of bearing have entered

combustion chamber through transfer

ports

1.20 Location: Piston head

Condition: Indentations caused by impact with

foreign bodies

Causes: Loose balls of main bearings have

entered combustion chamber through

transfer ports

1.21 Location: Piston lands

Condition: Ring retaining pin has loosened

Causes: Retaining pin not pressed in correctly

2. Cylinder

2.1 Location: Cylinder wallCondition: Severe scores

Causes: Foreign body has got between piston and

cylinder wall (in this case it was a piston pin snap ring which had not been fitted

properly)

2.2 Location: Exhaust port

Condition: Carbon deposits

Causes: Using unsuitable engine oil

Conse- Interruption of oil film results in traces of

quences: friction on piston.

2.3 Location: Exhaust port

Condition: Wear on edges of port

Causes: Broken piston ring has spread the piston

ring groove and damaged the edge of the

cylinder port

2.4 Location: Inlet side of cylinder wall

Condition: Severe wear

Causes: Long engine running life and effects of

dust

2.5 Location: Cylinder running surface

Condition: No coating

Causes: Cylinder has been re-bored after a mild

piston seizure.

Note: Ni or Cr coated cylinders must not be

re-bored

3. Crankshaft

3.1 Location: Crankshaft (inside crankcase)

Condition: Deposits

Causes: Chain lubricant seeps into crankcase

through a leak

• Faulty crankcase gasket

• Defective oil/shaft seal

3.2 Location: Big-end bearing

Condition: Bearing failure

Causes: Bearing components can be overloaded

or worn and fail as a result of excessively high engine speeds or an abnormal

buildup of dirt

Fig.: Comparison of NEW and FAULY bearing

Conse-

Pieces of big-end bearing can damage

quences: cylinder bore and piston.

4. Crankcase

4.1 Location: Crankcase

> Inside of crankcase dirty Condition: Causes:

• Unsuitable fuel mixture

• Chain lubricant enters crankcase through faulty gasket or oil/shaft seal

5. Carburetor

5.1 Location: Fuel pump

Condition: Valve tabs in pump diaphragm do not

locate properly. Pump ports are no longer

sealed properly.

Causes: Valve tabs can deform after long period

of service or as a result of using

unsuitable fuel.

Conse- Reduced pump output makes mixture too

quences: lear

Engine running problems

Starting difficulties

• Damage to piston

5.2 Location: Fuel pump

Condition: Diaphragm surface in area of pump

deformed

Causes: Gases in impulse port combined with

aggressive fuel constituents, or age

Conse- Stroke too short - resulting in reduced

quences: pump output

Over-lean mixture

• Engine running problems

Starting difficulties

Damage to piston

Fig.: Diaphragm removed from carburetor

5.3 Location: Fuel pump

> Condition: Impulse side of pump chamber is blocked

Causes: Dirt has got in through impulse port

Stroke too short - resulting in reduced

pump output Consequences:

Over-lean mixture

• Engine running problems

Starting difficulties

• Damage to piston

Fig.: Pump end cover **5.4 Location:** Fuel filter (strainer)

Condition: Dirty

Causes: Dirt particles enter carburetor through

damaged fuel pickup body or fuel hose

Fig.: Comparison CLEAN / DIRTY

5.5 Location: Inlet control lever

Condition: Contact surface worn

Causes: Mechanical abrasion due to

• dirt particles in fuel

• severe engine vibrations

Consequences: Poor inlet flow control resulting in problems with engine idling behavior

5.6 Location: Inlet needle

Condition: Tip worn

Causes: Increased mechanical abrasion owing to

dirt particles in fuel

Conse-Inlet needle seat not properly sealed and allows fuel to flow continuously; over-rich

mixture causes engine running problems

5.7 Location: Inlet needleCondition: Needle stuck

Causes: Dirt particles in fuel or prolonged out-of-

service period cause needle to stick

Conse- Engine running problems **quences:**

Inspection: 1. Remove inlet control lever

Turn carb upside down
 Needle should drop out

5.8 Location: Metering chamber

Condition: Exterior of chamber very dirty

Causes: Dirt has entered through compensation

bore in end cover.

Conse- quences: Inlet needle does not close properly and allows fuel to flow continuously

• Engine running problems due to over-

rich mixture

5.9 Location: Metering diaphragm

Condition: Deformed

Causes: Aggressive fuel or long period of service

Consequences:Deficient metering results inOver-lean mixture

• Engine running problems

Starting difficulties

Damage to piston

5.10 Location: Inlet control lever

Condition: Position of contact surface is incorrect

Causes: Inlet control lever wrongly adjusted or

bent

Conse- Incorrect fuel flow rate

quences:

5.11 Location: Choke or throttle shutter

Condition: Worn (looks as if it has been

sandblasted)

Causes: High level of dirt particles at clean air

side

Conse- • Engine running problems

quences: • Loss of power

• Wear on cylinder bore, piston and

rings

5.12 Location: Choke or throttle shaft

Condition: Severe wear

Causes: High level of dust in air

Faulty air filterUnsuitable air filter

• Poor filter maintenance

Consequences:

Supplementary air causes engine running problems. In case of breakage,

parts of choke shaft may get into crankcase or combustion chamber.

6. Guide Bar

6.1 Location: Underside of bar, just behind nose

Condition: Battered bar rails - rippled appearance

Causes: Saw chain run too slack over an

extended period has knocked against

rails on underside of bar

6.2 Location: Duromatic bar nose

Condition: Stellite worn

Causes: Poor lubrication due to inadequate oil

flow rate or use of unsuitable chain lubricant, e.g. vegetable oil without

additives

Fig.: Comparison of NEW / OLD bar

6.3 Location: Duromatic bar nose

Condition: Splayed groove

Causes: Groove has been spread by the use of

force, e.g. during wedging, or bar has

been used as lever

6.4 Location: Chain entry area on bar tail

Condition: Wear / severe burrs

Causes: Saw chain run too slack over an

extended period has knocked against

rails in entry area

6.5 Location: Bar rails

Condition: Local overheating

Causes: Bar has been pinched in cut, thus

causing bar rails to close

Remedy: Bar remains serviceable if groove is

opened up immediately (with groove drift)

Fig.: In this case the bar was used for too long

with a pinched groove

6.6 Location: Rollomatic S bar nose

Condition: Peened and chipped behind nose

Causes: Loose chain makes heavy impact on rails

after leaving nose sprocket

6.7 Location: Rollomatic bar noseCondition: Broken nose sprocket

Causes: Use of force or overloading due to

Stretched chainWrong chain pitchOver-tensioned chain

7. Saw Chain

7.1 Location: Bottom of cuttersCondition: Wear and burrs

Causes: Excessive loads due to

High depth gauges

• Dull cutters

• Cutters not properly sharpened

• Inadequate chain lubrication

7.2 Location: Cutters, tie straps and drive links

Condition: Wear and burrs

Causes: Worn chain sprocket

 Tips of drive link tangs hit bottom of sprocket

 Tops of sprocket teeth cause abnormal wear in center of cutters and tie straps

Fig.: Worn spur sprocket

7.3 Location: Tie strap and drive link

Condition: Severe wearCauses: • Abrasive dirt

• Excessive feed pressure

Fig.: Drive link worn thin, oil channel non-

existent in some cases

7.4 Location: Rivets

Condition: Damaged rivet head

Causes: Riveting not performed properly in

workshop

Conse- Broken of

Broken cutters and tie straps

quences:

7.5 Location: Rivets

Condition: Rivet head broken away

Causes: Severe burrs on bottom of cutters due to

Insufficient lubricationExcessive feed pressure

• Severely worn chain sprocket

Consequences:

7.6 Location: Cutters

> Damaged depth gauges and cutting edges Condition:

Contact with solid objects, e.g. stone, Causes:

metal

7.1 Rapid-Duro

Cutter in new condition

Normal wear

Cutter has to be resharpened

Excessive wear

Cause: Contact with extremely abrasive

materials

Conse- Cutter has to be ground back a long

quences: way; bottom of cutter badly worn

Cutter in new condition

Cutting edge broken away

Cause: Light contact with foreign body,

e.g. hard stone, steel nail, concrete

Consequences: Resharpening may be possible quences: depending on severity of damage

Top plate edge broken away

Cause: Heavy contact with foreign body while

using high feed pressure

Conse- Resharpening no longer possible; fit

quences: new cutter

Carbide tip and back of cutter sheared off

Cause: Extremely heavy contact with foreign

body while using excessive feed

pressure

Conse- Replace cutter

quences:

8. Miscellaneous

8.1 Location: Air filter (flocked)Condition: Damaged flocking

Causes: Not cleaned as specified

Conse-Quences:
Dust and dirt are sucked into clean air zone. Dust particles accelerate engine

wear.

8.2 Location: Air filter (wire mesh)

Condition: Fabric torn

Causes: Fabric has been torn by mechanical

damage, e.g. combination wrench has slipped while mounting the air filter

Conse- Dust and dirt can be sucked into clean air

quences: zone. More rapid engine wear.

8.3 Location: Fuel pickup body

Condition: Filter fabric damaged

Causes: Mechanical damage, e.g. while being

removed from tank

Conse- Increased carburetor and engine wear as

quences: a result of dirt in fuel

8.4 Location: Muffler

Condition: Carbonization

Causes: Unsuitable engine oils have been used

Fig.: In this case Bio chain oil was ingested

and burnt

